Interplay of DprA, RecA, and SsbB in the processing of transforming DNA in *Streptococcus pneumoniae*
The Pneumococcus

- Gram+ coccus, human commensal (nasopharynx)
- Pathogen (pneumonia, otitis, meningitis...)
- Naturally transformable species
Steps in pneumococcal transformation

- Non-competent cell
 - CSP
 - dsDNA
 - ssDNA uptake
 - single strand exchange
 - Transformed cell
 - Physical integration

requires competence (CSP) & exogenous dsDNA
Competence-induced proteins: The transformation machinery

Non-competent cell $\xrightarrow{\text{CSP}}$ Competent cell

DNA processing proteins

DNA uptake machine 11 genes

dsDNA

single strand exchange

Transformed cell \rightarrow Physical integration
Genetic transformation, a highly integrated strategy?

- **Non-competent cell**
 - 6 genes
 - DNA release "fratricide"
 - DNA processing proteins

- **Competent cell**
 - 11 genes
 - DNA uptake machine
 - dsDNA
 - single strand exchange
 - Physical integration
 - Transformed cell
A DNA-uptake machine similar to that of *Bacillus subtilis* (except EndA) internalizes ssDNA (from 3' → 5').

DNA-uptake produces ssDNA, a key recombination intermediate.

No RecBCD-like activity is required for pneumococcal transformation.

Halpern et al. (2004)
The DNA-uptake machine localizes at the poles in *B. subtilis*

Hahn *et al.* (2005); Kidane and Graumann (2005)
DNA-processing proteins also localize at the poles in *B. subtilis*

Hahn *et al.* (2005); Kidane and Graumann (2005)
DNA-processing proteins of *S. pneumoniae*

The most important defect is observed in the absence of RecA or DprA (black arrows)

Martin et al. (1995); *Bergé et al.* (2003); *Desai and Morrison* (2006); *Burghout et al.* (2007)
Interplay of DprA, RecA, and SsbB in the processing of ssDNA
Internalized ssDNA is bound to a competence-induced protein

Nucleoprotein complex (NPC)

Control ssDNA

Hydroxylapatite chromatography

NPC eluted with 0.10-0.13 M phosphate
ssDNA alone eluted with 0.2 M phosphate

Morrison (1977)
Internalized ssDNA is bound to a competence-induced protein

Which protein?

Morrison (1977)

Hydroxylapatite chromatography
SsbB is the major protein component of the eclipse complex

Morrison, Mortier-Barrière et al. (2007) Laetitia Attaiech (unpublished; see Poster)
The finding that ssDNA is complexed with SsbB raises an important question:

How does RecA alleviate the SsbB barrier to access ssDNA?
Dedicated proteins called RMP (Recombination Mediator Proteins) overcome the SSB barrier in both Procaryotes and Eukaryotes

<table>
<thead>
<tr>
<th>Activity</th>
<th>Saccharomyces cerevisiae</th>
<th>Bacteriophage T4</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB</td>
<td>RP-A</td>
<td>Gp32</td>
<td>SSB</td>
</tr>
<tr>
<td>Recombinase</td>
<td>RAD51</td>
<td>UvsX</td>
<td>RecA</td>
</tr>
<tr>
<td>RMP</td>
<td>RAD52</td>
<td>UvsY</td>
<td>RecO/RecR</td>
</tr>
</tbody>
</table>

Beernink and Morrical (1999)
What about SsbB and the processing of transforming DNA?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Saccharomyces cerevisiae</th>
<th>Bacteriophage T4</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB</td>
<td>RP-A</td>
<td>Gp32</td>
<td>SSB</td>
</tr>
<tr>
<td>Recombinase</td>
<td>RAD51</td>
<td>UvsX</td>
<td>RecA</td>
</tr>
<tr>
<td>RMP</td>
<td>RAD52</td>
<td>UvsY</td>
<td>RecO/RecR</td>
</tr>
</tbody>
</table>

RecOR are not required for genetic transformation in S. pneumoniae (unpublished)

Beernink and Morrical (1999)
DprA is a widely conserved bacterial protein

Spn-DprA
282 aa

Bsu-DprA
297 aa

46% identity

Mortier-Barrière#, Velten#, Dupaigne#, Mirouze# et al. (2007)
Studies of the biochemical properties of DprA

° Protein-DNA interactions

Isabelle Mortier-Barrière
Marion Velten (Patrice Polard)

Pauline Dupaigne
Olivier Piétrement (Eric Le Cam)

° Protein-protein interactions

Isabelle Mortier-Barrière
Nicolas Mirouze (Philippe Noirot)

Mortier-Barrière#, Velten#, Dupaigne#, Mirouze# et al. (2007)
DprA displays all activities that characterize RMPs

<table>
<thead>
<tr>
<th>Activity</th>
<th>S. cerevisiae</th>
<th>S. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction with recombinase</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction with DNA</td>
<td>ss > ds</td>
<td>ss > ds</td>
</tr>
<tr>
<td>Stimulate recombinase</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcome SSB inhibition</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction with SSB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ATP required</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
DprA displays all activities that characterize RMPs

<table>
<thead>
<tr>
<th>Activity</th>
<th>S. cerevisiae</th>
<th>S. pneumoniae</th>
<th>B. subtilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 - E. coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. subtilis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMP</th>
<th>RAD52 - UvsY - RecOR</th>
<th>DprA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction with recombinase</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction with DNA</td>
<td>ss > ds</td>
<td>ss > ds</td>
</tr>
<tr>
<td>Stimulate recombinase</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcome SSB inhibition</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interaction with SSB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ATP required</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
DprA interacts with RecA

Co-capture in pneumococcal extracts (from competent cells harboring a C-ter His-tagged chromosomal copy of recA)

Interaction in yeast two-hybrid assays

Mortier-Barrière#, Velten#, Dupaigne#, Mirouze# et al. (2007)
DprA interacts with ssDNA and promotes the loading of RecA on ssDNA

Mortier-Barrière#, Velten#, Dupaigne#, Mirouze# et al. (2007)
These nucleofilaments catalyze the formation of joint molecules.
DprA also displaces SSB to permit the loading of RecA on SSB-precoated ssDNA

SSB/nt, 1/5
RecA/nt, 1/3

Mortier-Barrière#, Velten#, Dupaigne#, Mirouze# et al. (2007)
We propose that DprA is a transformation-dedicated RMP
Open questions - Perspectives:

- *In vitro* experiments carried out with \textit{E. coli} RecA and \textit{E. coli} SSB:
 Need to document the homospecific situation

- Internalized ssDNA immediately degraded in \textit{dprA} or \textit{recA} mutant cells:
 Why is SsbB unable to access ssDNA in this genetic context?
Open questions - Perspectives:

- *In vitro* experiments carried out with E_c^{RecA} and E_c^{SSB}:
 Need to document the homospecific situation

- Internalized ssDNA immediately degraded in $dprA$ or recA mutant cells:
 Why is SsbB unable to access ssDNA in this genetic context?

- Investigate localization dependencies

- Capture of protein and nucleoprotein complexes *in vivo*
Collaborations:

Philippe Noirot
Marie-Françoise Noirot-Gros
(Nicolas Mirouze)

Laetitia Attaiech (PhD)
Nathalie Campo (CR1)
Pauline Dupaigne (Postdoc)
Isabelle Mortier-Barrière (IR)
Bernard Martin (Prof)
(Nicolas Mirouze)

Collaborations:

Patrice Polard (DR)
Audrey Olivier (PhD)
Violette Morales (IR)

Bioinfo.
Gwennaëlle Fichant (Prof)

Institut Gustave Roussy
Laboratoire de Microscopie Moléculaire et Cellulaire
Villejuif

Y2H
Francois Lecointe
Steven McGovern
Marion Velten

Tem
AFM

Eric Le Cam
Olivier Piètrement
(Pauline Dupaigne)

Biochem

LMGMM Laboratoire de Microbiologie et Génétique Moléculaires
UMR 5100